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Abstract. The nature of the phase transition in the Potts model is studied when second 
neighbours or infinite range couplings are added. A new criterion, recently proposed, is 
applied. 

Recently much attention has been devoted to the problem of recognising the order 
of phase transitions for lattice spin models (see for example Enting and Wu 1982, 
Fucito and Parisi 1981) as well as for lattice gauge theories. From the theoretical 
point of view, if the phase transition is second order, one expects to be able to describe 
the critical behaviour with field theoretical methods (Wilson and Kogut 1974). 

A classical example is the q-state Potts model on a hypercubic &dimensional 
lattice whose reduced Hamiltonian is 

where the sum is over nearest-neighbour sites and the statistical variables c = 
0, 1 ,  , . . , q - 1. It is well known that a ‘critical’ value of q exists, qctd) ,  depending 
on the space dimension d, where the phase transition changes order, becoming a 
first-order one. Exact results (Baxter 1973) give qc(2) = 4 while q & 3 )  < 3 has been 
obtained by Monte Carlo simulations (Blote and Swendsen 1979) as well as approxi- 
mate methods (Kogut and Sinclair 1981, Livi et a1 1983). However, i t  is not understood 
very well what happens to the order of the phase transition if one adds other couplings 
to the Hamiltonian (l),  for example 

where N is the number of sites of the lattice. 
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The coupling (2) is the simplest one, in addition to the coupling (1) which can 
appear if one starts to perform real space renormalisation group calculations on the 
Potts model. In this respect it would seem that the renormalisation group framework 
is suitable for discussing also the order of a phase transition when competing interac- 
tions are present. However, from the technical point of view it is already difficult to 
discuss the order of the transition for the model (1) in low dimension (Nienhuis et a1 
1979). It is well known that the mean field approximation to the model (1) always 
predicts a first-order phase transition when q > 2, i.e. qc = 2. Thus it is impossible, in 
such an approximation, to understand how the order of the phase transition changes 
when couplings of the type (2) or (3) are considered. However, it is possible to take 
into account corrections to the mean field using Onsager’s reaction field (Dekeyser 
et a1 1983). With such an approximation one improves the value of qc(d) and obtains 
that qc can depend on the other couplings. Monte Carlo simulations seem to be in 
agreement with this behaviour (Saito 1982, Fucito and Vulpiani 1982). This paper 
has a twofold purpose. The first one is to study the three-dimensional and three-state 
Potts model (1) when the coupling (2) is added; we discuss also the two-dimensional 
and three-state model (1) when the infinite range potential (3) is added. The second 
purpose is to extend the application of a new criterion for distinguishing between 
first- and second-order phase transitions (Livi et a1 1983). 

Let us start by recalling what is the criterion we want to apply for distinguishing 
the order of the phase transition in a spin model. Let us look at the free energy 
density in the mean field approximation for the model (1) (Mittag and Stephen 1974) 
as a function of the ‘magnetisation’, m = ((qS,,o - l ) / (q  - 1)): 

* (4) 
1 + (q - 1)m q - 1  1 + (q  - l ) m 2  

T(K,  m )  = In[l +(q - l)m]+-(1 - m j ln(1- m )  -dK 
4 4 4 

The spontaneous magnetisation of the system, in such an approximation, is given by 
the value of m for which (4) has a minimum. This gives the well known equation of 
state (we have chosen to break the symmetry along the ‘axis’ U = 0) 

Tr, e~p(2dKmS, ,~  )(qS,,o - 1) - e2dKm - 1 m =  - 
(q - 1) Tr, e~p(2dKmS, ,~~)  eZdK + q  - 1 

which can be obtained also by considering a single spin immersed in an effective 
‘magnetic field’ h = 2dKm. All this can be generalised to include a class of approxima- 
tions which will be called mean-field-like approximations. Let us consider a cluster 
(e of spins inside which we treat exactly the interactions of the model (1) (or some 
modification of it);  we call the Hamiltonian for such a cluster H g ( c ) ,  while the 
interactions between internal spins and external ones are modified in the following way: 

(6) 
where b is a sort of magnetisation. The Hamiltonian for this interaction will be called 
bfig(u).  

8 uc,u, + ba ,,,o, i E %, j si %, 

In this way the equation of state in an external field h is 

~ w K  h, 6 )  = ( ~ / N w )  In &(K, h,  61, 

zg (K,h ,b )=Tr ,  exp(H,(m)+bfii ,(m)+h I C %  1 (qSu2,0-1)/(q-l)), 

where Ne is the number of sites of the cluster %’, 

(7a)  

(76 1 
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For a cluster of a single point, He = 0 and fie = 2dKSm,~,  while for a cluster of a 
couple of nearest-neighbour sites, H s  = Ku,.,. and = (2d - 1)K(13,,~ + S m , , o ) .  The 
generalisation to the model (1) including terms of the type (2) or (3) is obvious. The 
mean field approximation consists in setting b = m  in equations (7) .  However, this 
does not give a rapid improvement in the estimate of the transition temperatures. It 
is well known that it is possible to obtain very good estimates of the transition 
temperatures using consistency equations a la Bethe (Domb 1960). The generalised 
Bethe approximation is obtained by considering two different clusters %' and V' and 
requiring that the b field in (7a )  is given by imposing that the magnetisation does not 
depend on the cluster we used, i.e. 

(In general K will represent a set of couplings.) The m-dependent free energy density 
can be obtained from (8) as follows: eliminating b as a function of K,  h and m, one 
gets an equation for h 

where T(K, m )  is the Legendre transform with respect to h of the free energy density 
F ( K ,  h 1, 

T ( K , m ) = F ( K , h ) + h m .  (10) 

Thus the integration of (9) with respect to m gives us r apart from a constant. These 
observations allow the use of (9) for h = O  to determine the transition temperature, 
in this approximation. The value of K, K I I ,  at which the linear term in m vanishes, 
determines the inverse temperature at which a second-order phase transition occurs. 
If we are dealing with a first-order phase transition we can appeal to the Maxwell 
construction to evaluate the inverse temperature K I .  

Figure 1 shows the typical behaviour of the free energy density as a function of 
m, T(K,  m ) ,  for the model (1) with q >2 (if more than one coupling is present, only 

I 
Figure 1. Qualitative shape of the free energy r against the magnetisation m for a 
mean-field-like approximation for the Potts model for q > 2. 
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one of them is allowed to change). For K < K I  the absolute minimum in the interval 
(-(q - l)-’, 1) is at m = 0. For KI < K < KII, m = 0 is a relative minimum while the 
absolute minimum is at m # 0. At K = KII > K I  the relative minimum at the origin 
moves continuously into the m < 0 region, the origin becomes a maximum. However, 
this second-order phase transition is present in an ‘unstable’ way. Indeed, from the 
point of view of the stability of the free energy, the true transition would be of first 
order. Furthermore, if one tries to improve the mean field approximation by consider- 
ing greater and greater clusters of sites, one realises that the behaviour that we have 
just described is still present. Thus, if we do trust the principle of minimisation of 
mean-field-like free energies, then we must give up describing first- and second-order 
phase transitions in the mean field framework: this is true, at least, for Potts model 
and lattice gauge theories. We are instead going to consider both firrt- and second- 
order phase transitions, which are present in every mean-field-like approximation, on 
the same footing. The way of distinguishing the true nature of the phase transition 
is the content of the conjecture we propose. 

Now we come to the reasons which will justify our conjecture. It is known (Brydges 
et a1 1982, Sokal 1982) that for a certain class of spin models the mean field critical 
coupling KFF is a rigorous lower bound to the true critical coupling K,. What we 
can observe is that this holds for all the mean-field-like approximations for the 
two-dimensional q-state Potts model in a square, honeycomb and triangular lattice 
for which the exact solutions are known and qc = 4 (Baxter et a1 1978). That is to 
say, for all the mean-field-like estimates of K I  and KII 

This cannot be a surprise, but what is a surprise is that at a certain value of q = 4 > q,, 
depending on the mean field approximation used, KI1 is an overestimate of the exact 
value of K,,,,, at which the transition takes place, while KI  still remains below K,,,,, 
and approaches it from below better and better as the approximation improves. Thus 
we are led to the following conjecture for lattice spin models: 

(a) if there exists ar least a mean-field-like approximation (see below) for which 
it happens that KII > K,,,,,, then the true transition is first order; 

(b) if this does not happen, i.e. KII<Ktrans for every mean-field-like approxima- 
tion, then the true transition is second order. 
In the case of the Potts model, Livi et a1 (1983) obtain the exact 4,’s for the 
above-mentioned two-dimensional lattices and an estimate of 4Jd) for all d. 

The following remarks regard the way in which one proceeds in practice: (i) if one 
has at disposal exact results for K,,,,, (as for example for the two-dimensional Potts 
model or four-dimensional Z2 gauge theory using duality arguments) or very good 
estimates for Ktrans, coming from Monte Carlo experiments or series expansion 
methods, then one uses a few mean-field-like approximations together with the 
conjecture. It is obvious that, having at disposal only a finite number of approxima- 
tions, we can surely say if the transition is first order, applying conjecture (a). 
Notwithstanding the conjecture (b) does not seem efficient, from the practical point 
of view, it allows one to get good results even if one has at disposal a few approximate 
values of K11. (ii) When we have not at disposal the results mentioned in (i) we take 
as a good estimate of K,,,,, the value of a good mean-field-like approximation and 
we compare it  with a KII coming from a worse mean field approximation (Livi et a1 
1983). 
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Now we come to the applications. The first model, which is important from the 
physical point of view, is described by the reduced Hamiltonian 

We consider the three-dimensional, three-states case. If L = 0 the transition is a very 
weak first-order phase transition (Blote and Swendsen 1979, Swendsen et a1 1982). 
What do we expect when L # O? Intuitively if L > 0 we expect that the transition 
would remain of the first order because the number of neighbouring spins is increasing, 
which would be equivalent to an effective nearest-neighbour Potts model in a higher 
dimensionality. Conversely, if L < 0 the same argument tells us that the transition 
could become of second order. Monte Carlo simulations (Fucito and Vulpiani 1982) 
seem to confirm this behaviour. 

Now we want to obtain the same quantitative estimate of the value of L at which 
the phase transition becomes of the seccnd order, using our conjecture. We considered 
the clusters with one site (VI),  two nearest-neighbour sites (Vz) and a cubic cluster 
(V3). In table 1 we report some values of the transition couplings at different values 
of L. K::”, K:i3’ and K‘1I3’ are the values of the transition couplings obtained using 
(8) with the clusters W1, Vz and V1, V3 respectively (K1:3’ is practically the same as 
K i : 2 ’ ) .  The intersection of the transition lines K : i 2 ’ ( L )  and K:’”(L) occurs at 
L = -0.16, K = 0.94 and according to our conjecture it is an estimate of the value of 
L at which the transition changes order: second order for L < -0.16, otherwise it is 
first order. This result is in agreement with Monte Carlo simulations (Fucito and 
Vulpiani 1982) which predict a change of order in the phase transition in the region 
-0.2366 < L < 0. Monte Carlo data suggest that the curve K,,,,, ( L )  is well approxi- 
mated by a straight line whose intersections with Kii2’ ( L )  and Ki:3’ ( L )  are ( L  = 
-0.027, K = 0.62) and ( L  = -0.055, K = 0.70) respectively. However, these two last 
estimates are not very accurate due to the lack of numerical results, even if they are 
qualitatively in agreement with the previous result. It is worthwhile to remark that 
in this framework, using a simple technique, one is able to distinguish the order of 
the phase transition when standard techniques are very difficult to apply. Now let us 
consider the model (1) when the perturbation (3)  is added. The interest for such a 
model is only for testing if our technique works properly and, due to the peculiarity 
of the perturbation (3), it is also less physical than the model we investigated above, 
Furthermore, it is known (Cape1 et a1 1979) from general arguments that an infinite 
range perturbation of the type (3)  makes unstable the character of the phase transition 
at A = 0. In the case we are considering, i.e. d = 2 and q = 3,  for A = 0 the phase 

Table 1. Some values of the transition lines obtained in the mean-field-like approximations 
for the Potts model: K is the NN coupling, L is the NNN coupling. Monte Carlo results 
are reported in brackets. 

0 0.560 0.534 0.564 (0 .550)  
-0.100 0.792 0.781 0.806 
-0.180 0.981 0.984 1 .oo 
-0.237 1.117 1.128 1.145 (1.183) 
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transition is of second order and it is of first order as soon as A > 0. More details and 
a more general discussion can be found in Capel et a1 (1979). Now let us apply our 
conjecture to this model. In this case we have at our disposal M C  results (Fucito et 
a1 1983) which predict that the transition line K,,,,, ( A )  starts at A = 0, K = ln(1 + 3) = 
1.005 with a slope -0.95 f 0.2 (we shall see that these data are sufficient). We used 
the cluster V I  of a single site, W 2  of two nearest-neighbour sites and V3 of four sites 
around an elementary plaquette. For A - 0  we easily obtain K: i2 ) (A)  = 
0.916 - 0.327 + O(A 2 ,  and K; i3 )  = 0.932 - 0.354 + O(A2). Then, while the estimates 
of K,,,,, (A = 0) are rather good (-8O/o), the slopes of the lines KII near A = 0 are 
well below the value of the slope given by MC simulation. If the trend of the K I I  lines 
remains the same as we improve the approximation so that K I ,  (A = 0) goes toward 
the exact result, we obtain that the intersection of these lines with the exact one occurs 
exactly at A = 0. It is obvious that if KII (A = 0) s K (A  = 0) for any mean-field-like 
approximation, due to the fact that for A = O  the transition is of second order, we 
shall always obtain an intersection between K,,,,,(A) and K d A )  at a certain 1. We 
chose this model to test our conjecture just because we wanted to see if the conver- 
gence, 

Using the clusters W l ,  V2 and VI ,  V3 we get i = 0 . 1 7  and i=O.14 respectively, 
which are indeed rather small. To test the above argument, which suggests that i + 0 
as the approximation improves, we have combined the three clusters to obtain a 
further generalisation of the mean-field-like approximation (Domb 1960). The result 

( A )  = 0.974-0.414A which intersects the K,,,,,(A) at A = 0.058 and is quite 
a good value, suggesting that effectively 1 + 0 as the approximation improves. By the 
way, we notice the rather good estimates of K,,,,, ( A  = 0). Furthermore, we have 
verified that the KII(A) lines always remain above K,,,,, ( A )  after having intersected it. 

In conclusion, we have considered some applications of a criterion for distinguishing 
between continuous and discontinuous transitions in spin models. First, we analysed 
the order of the phase transition in the three-dimensional and three-state Potts model 
when a second-neighbour interaction is added. The results have shown clearly that 
the new coupling can change the order of the phase transition. 

The other model we considered, which is less interesting from the physical point 
of view, was the two-dimensional and three-state Potts model where, now, the new 
coupling is an infinitely long range and infinitely weak potential. The results were in 
good agreement with the analysis by Capel er a1 (1979). 

These applications confirm that the proposed conjecture is a powerful tool for 
predicting the order of a phase transition in a given spin model. 

+ 0, is sufficiently rapid as the approximation improves. 

is ~ ( 1 2 3 )  
11 
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